Na₃GdCl_o- A COMPOUND WITH UNCOMMON PHASE TRANSITIONS

H.I. SEIFERT and G. THIEL

Inorganic Chemistry, University Gh Kassel/FRG

SUMMARY

For Na₃GdCl_o two modifications exist: at ambient temperature trigonal D-Na₃GdCl_o. below 497^oC a monoclinic H-Na₃GdCl₆. There is no direct transition from D-> H; but at 209^oC D-Na₃GdCl₆ decomposes to NaCl + Na₃GdCl₅ At 265^oC H-Na₃GdCl₆ is formed by the reverse reaction. This way of acting is proved by e.m.f. vs. T.-measurements with a galvanic cell for solid electrolytes, and by dynamic high-temperature X-ray diffraction patterns. For the hitherto unknown compound Na_nGdCl₃ the unit cell parameters are determined.

INTRODUCTION

The pseudobinary systems NaCl/LnCl₃ of the early lanthanoids Ln=La-Nd are eutectic with a range of mixed crystal formation near the composition $Na₂Ln₅Cl₁₈$: in the units (LnCl_2) one Ln^{3+} is substituted by three Na⁺-ions 11. 2. 3. 41. In the system NaCl/ $SmCl₃$ [5] additionally a compound Na_nSmCl₅ exists, the most stable type of ternary chlorides in all systems with A=K. Rb. Cs. 1965 Korshunov et al. [6] had found two incongruently-melting compounds in the system NaCl/EuCl₃ (Na₃EuCl_a and Na₂EuCl₃) and an incongruently -melting Na₃GdCl_a in the system NaCl/GdCl_a. For the Gd-compound a phase transition occurs at 205^oC. Meyer [7] solved by single-crystal work the structure of D-Na₃GdCl_a, a trigonal unit cell in the stuffed LiSbF_a-type. The high-temperature medification has a monoclinic cryolite structure, isotypic with Na_nErCl_n [8]. A surprising finding of Meyer, that the density of H-Na₃GdCl_a is greater than that of the D-modification, was the reason for ourselves to re-investigate these features by e.m.f.-measurements in a galvanic cell for solid electrolytes, we had developed in 1982 [9].

EXPERIMENTAL

Preparation of compounds: $GdCl_3$: dehydration of the hydrate $GdCl_3$.6H.O (Fa. Ventron. 99.99%) in an HCl-stream. - NaCl: p.a.-quality, Fa. Merck: dried at 500°C in HCl. Ternary chlorides: prepared by fusion in vacuum sealed quartz ampoules: if necessary annealed. All manipulations in a glove-box (10 ppm H.O).

DTA-measurements: heating curves (2 deg-min⁻¹). Preparation of the samples like the ternary chlorides.

004-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V.

Solution calorimetry: Home-built isoperibolic calorimeter. From the enthalpies of solution. ΔH^1 , the reaction enthalpies, ΔH^f , were calculated:

 $\Delta H_{298}^f = [\Delta H_{298}^1 (GdCl_3) + n \cdot \Delta H_{298}^1 (ACI)] - \Delta H_{298}^1 (A_n GdCl_{n+3})$

X-ray-powder patterns: Philips PW 1050/25 goniometer. High-temperature photos: Simon-Guinier method: standard: Al₂O₃ with a=475.9 pm; c=1299.0 pm; CuK₂ radiation. E.m.f.-measurements: A description of the galvanic cell is given elsewhere [9]. For the formation of Na₃GdCl_a the set-up of the cell was

(C+Cl₂)/NaCl/Na⁺-conducting diaphragm/Na₂GdCl₅/(C+Cl₂).

The solid electrolytes (compressed disks) were separated by a sintered disk of a $Na⁺$ -conducting glass powder. The collected e.m.f./T values were subjected to a linear regression analysis. Temperature range: 260-380⁰C.

RESULTS

By our own DTA-measurements (fig.1) the existence of Na_3GdCl_2 , incongruently-melting at 497° C with a chase transition at 209° C, could be confirmed. Additionally, an incongru-

Fig. 1 System NaCl/GdCl₃ (0 to 50 mol-%)

ently-melting compound Na.GdC!5 $17/K$ was found with the peritectic at 430°C and 38.0 ± 0.5 mol-% GdCl₂. -mo The correct structure of the phase diagram beyond the eutectic at 1000 416^oC and 45.0^t 0.5 mol-% GdCl₃ is still unclear.

Na₂GdCl₅ crystallizes in the ∞ K_oPrCl₅ structure (space group: Pnma) [10] with the orthorhombic 800 unit cell: $a = 1203.1(3)$: $b = 829.5(2)$: $c = 760.5(2)$ pm; $Z=4$.

The thermodynamic stability ∞ of Na₃GdCl₃ is given by the free (Gibbs) enthalpy of synproporti-600 onation according to the equation.

 $NaCl + Na_nGdCl₅ = Na₃GdCl_n.$ 500 This was measured in a galvanic cell with the electrolytes NaCl vs. Na.GdCl₅ (+ some Na₃GdCl₆ to 400 maintain reversibility). 30 e.m.f.values E were measured in the temperature range 530-650 K.

.4 linear regression analysis (fig. 2) yielded the equation

 $E/mV = -116.65$ (± 1.2) - 0.2169 (± 0.002) \cdot T/K

Using $\Delta G = -n \cdot F \cdot E$, the Gibbs-Helmholtz relation is formed:

 $\Delta G^{syn}/k$ J = 11.26 - 0.0209 · T/K

with $\Delta H^{syn} = 11.3 \pm 0.1 \text{ kJ·mol}^{-1}$ and $\Delta S^{syn} = 20.9 \pm 0.2 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$.

At 539 K (265^OC) ΔG^{syn} is zero: below this temperature the compound becomes instable. it must decompose to a mixture $(NaCl + Na, GdCl_{3}).$

It is not possible to conduct these measurements at temperatures below \sim 250°C because of the growing electrical resistivity of the electrolytes. However, the distinct endothermic DTA-effect at 209⁰C in heating curves indicates a solid-state reaction, which is not a transition from D->H, but a decomposition D-Na₃GdCl₆ -> NaCl + Na₂ GdCl₅. This is confirmed by a dynamic high temperatur Guinier photo: in fig. 3, which is drawn directly from this photo. one can see the peaks of $D-Na_AGdCl$ _n and $H-Na_AGdCl$ _n separated by the reflections of the mixture (NaCl + Na_nGdCl₅).

The X-ray patterns of both $Na₃GdCl_n$ -modifications could be indexed using the unit ce!l parameters of Meyer: the D-form with a trigonal cell. the H-form with a monoclinic cell.

Fig. 2 EMF vs. T values for the reaction NaCl + Na_2GdCl_5 = Na_3GdCl_6

Fig. 3 Dynamic high-temperature Guinier pattern of $Na₃GdCl₆$

It is not possible to retain $H-\text{Na}_3GdCl_9$ metastable at ambient temperature by quenching: thus. no determination of AH by solution-calorimetry could be done. For $D-Na_3GdCl_2$ the following solution enthalpies were yielded: ΔH_{298}^1 (GdCl₂) = +4.5 kJ·mol⁻¹ ΔH_{298}^{1} (NaCl) = -180.3 kJ·mol⁻¹

 $\Delta H_{298}^1(D-Na_3GdCl_6)=-187.9 \text{ kJ/mol}^{-1}$.

With these values according to the equation $3NaCl+GdCl_3 = D-Na_3GdCl_0$ the enthalpy $\Delta H_{\alpha qg}^f(D-Na_qGdCl_q)$ =+11.2 kJ·mol⁻¹ is obtained. (It must be stated that the enthalpy. obtained by e.m.f.-measurements. is related to the formation of $H-\text{Na}_3GdCl_9$ from NaCl and Na_nGdCl₃).

CONCLUSIONS

H-Na₃GdCl_a is a compound stable above 538 K. At this temperature the loss of lattice enthalpy compared with a mixture of NaCl+Na_cGdCl₅ (positive ∆H^{syn}) is just equal to the T.AS.term, produced by a gain in entropy. Neither by quenching nor by normal cooling it can be retained metastable at ambient temperature. but with strong undercooling it is transformed directly to D-Na₃GdCl₆ at ~400 K. The (NaCl+Na₂GdCl₅)-mixture stable at intermediate temperature is not formed in cooling experiments because of a too great kinetic hindrance: it can be yielded only by annealing at temperatures between 480 and 530 K for 5 or more days.

The situation with D-Na₃GdCl₆ is still much more precarious by such kinetic effects. When heating the compound either decomposition to NaCl+Na_nGdCl_s occurs at \sim 480 K. as demanded by thermodynamics. or this reaction is kinetically suppressed and at $~570$ K H-Na₂GdCl is formed directly. In this case the formation of the H-modification is very slow, at temperatures slightly above 538 K in DTA - or DSC - experiments only a more or less small endothermic peak can be observed. This behaviour does not admit a direct measurement of the related enthalpy by DSC.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

REFERENCES

- 1. H.J. Seifert. H. Fink and G. Thiel. J.Less-Common Metals 110 (1985) 1959.
- 2. H.J. Seifert. J. Sandrock and G. Thiel. J.Therm.Anal. 31 (1987) 1309.
- 3. H.J. Seifert. J. Sandrock and J. Uebach. Z.anorg.allg.Chem. SSS (1987) 143.
- 4. H.J. Seifert. H. Fink u. J. Uebach. J.Therm.Anal. 32 (1988). 625.
- 5. G. Thiel and H.J. Seifert. Thermochim.Acta 133 (1988) 275.
- 6. B. G. Korshunov. D. V. Drobot and Z. M. Shevtsova. Z.Neorg.Khim 10 (1965) 2310 + 939.
- 7. G. Meyer. Z.anorg.allg.Chem. 517 (1984) 191.
- 8. G.Meyer. P. As. T. Sch!eid and M. Irmler. Z.anorg.allg.Chem. 554 (1987) 2s.
- 9. H.J. Seifert and G. Thiel. J.Chem.Thermodyn. 14 (1982) 1159.
- 10. G. Meyer and E. Hüttl. Z.anorg.allg.Chem. 497 (1983) 191.