Na3GdCl - A COMPOUND WITH UNCOMMON PHASE TRANSITIONS

H.J. SEIFERT and G. THIEL

Inorganic Chemistry. University Gh Kassel/FRG

SUMMARY

For Na₃GdCl_b two modifications exist: at ambient temperature trigonal D-Na₃GdCl_b, below 497° C a monoclinic H-Na₃GdCl_b. There is no direct transition from D-> H; but at 209°C D-Na₃GdCl_b decomposes to NaCl + Na₂GdCl₅. At 265°C H-Na₃GdCl_b is formed by the reverse reaction. This way of acting is proved by e.m.f. vs. T.-measurements with a galvanic cell for solid electrolytes, and by dynamic high-temperature X-ray diffraction patterns. For the hitherto unknown compound Na₂GdCl₅ the unit cell parameters are determined.

INTRODUCTION

The pseudobinary systems NaCl/LnCl₃ of the early lanthanoids Ln=La-Nd are eutectic with a range of mixed crystal formation near the composition Na₃Ln₅Cl₁₈: in the units $(LnCl_3)_{0}$ one Ln³⁺ is substituted by three Na⁺-ions [1, 2, 3, 4]. In the system NaCl/SmCl₃ [5] additionally a compound Na₂SmCl₅ exists, the most stable type of ternary chlorides in all systems with A=K. Rb. Cs. 1965 Korshunov et al. [6] had found two incongruently-melting compounds in the system NaCl/EuCl₃ (Na₃EuCl₀ and Na₂EuCl₅) and an incongruently -melting Na₃GdCl₀ in the system NaCl/GdCl₃. For the Gd-compound a phase transition occurs at 205°C. Meyer [7] solved by single-crystal work the structure of D-Na₃GdCl₀, a trigonal unit cell in the stuffed LiSbF₀-type. The high-temperature modification has a monoclinic cryclite structure, isotypic with Na₃ErCl₀ [8]. A surprising finding of Meyer, that the density of H-Na₃GdCl₀ is greater than that of the D-modification, was the reason for ourselves to re-investigate these features by e.m.f.-measurements in a galvanic cell for solid electrolytes, we had developed in 1982 [9].

EXPERIMENTAL

Preparation of compounds: $GdCl_3$: dehydration of the hydrate $GdCl_3$ · $6H_2O$ (Fa. Ventron, 99.99%) in an HCl-stream. - NaCl: p.a.-quality, Fa. Merck: dried at $500^{\circ}C$ in HCl. Ternary chlorides: prepared by fusion in vacuum sealed quartz ampoules: if necessary annealed. All manipulations in a glove-box (10 ppm H₂O).

DTA-measurements: heating curves (2 deg·min⁻¹). Preparation of the samples like the ternary chlorides.

004-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V.

Solution calorimetry: Home-built isoperibolic calorimeter. From the enthalpies of solution, ΔH^{1} , the reaction enthalpies, ΔH^{f} , were calculated:

 $\Delta H_{298}^{f} = [\Delta H_{298}^{l} (GdC!_{3}) + n \cdot \Delta H_{298}^{l} (AC!)] - \Delta H_{298}^{l} (A_{n}GdC!_{n+3})$

X-ray-powder patterns: Philips PW 1050/25 goniometer. High-temperature photos: Simon-Guinier method: standard: Al_2O_3 with a=475.9 pm; c=1299.0 pm; CuK_x radiation. E.m.f.-measurements: A description of the galvanic cell is given elsewhere [9]. For the formation of Na₃GdCl_a the set-up of the cell was

 $(C+Cl_{2})/NaCl/Na^{+}-conducting diaphragm/Na_{2}GdCl_{2}/(C+Cl_{2}).$

The solid electrolytes (compressed disks) were separated by a sintered disk of a Na⁺-conducting glass powder. The collected e.m.f./T values were subjected to a linear regression analysis. Temperature range: $260-380^{\circ}$ C.

RESULTS

By our own DTA-measurements (fig.1) the existence of Na_3GdCl_a , incongruently-melting at 497°C with a phase transition at 209°C, could be confirmed. Additionally, an incongru-

Fig. 1 System NaCl/GdCl₃ (0 to 50 mol-%)

ently-melting compound Na₂GdCl₅ 1/K was found with the peritectic at 430°C and 38.0 ± 0.5 mol-% GdCl₃. The correct structure of the phase diagram beyond the eutectic at 416°C and 45.0 ± 0.5 mol-% GdCl₃ is still unclear.

Na₂GdCl₅ crystallizes in the K₂PrCl₅ structure (space group: Pnma) [10] with the orthorhombic unit cell: a=1203.1(3): b=829.5(2); c=760.5(2) pm: Z=4.

700 The thermodynamic stability of Na₃GdCl₃ is given by the free (Gibbs) enthalpy of synproportionation according to the equation.

NaCl + Na₂GdCl₅ = Na₃GdCl₆. 500 This was measured in a galvanic cell with the electrolytes NaCl vs. Na₂GdCl₅ (+ some Na₃GdCl₆ to maintain reversibility). 30 e.m.f.values E were measured in the temperature range 530-650 K. A linear regression analysis (fig. 2) yielded the equation

 $E/mV = -116.65 (\pm 1.2) - 0.2169 (\pm 0.002) \cdot T/K$

Using $\Delta G = -n \cdot F \cdot E$, the Gibbs-Helmholtz relation is formed:

 $\Delta G^{syn}/kJ = 11.26 - 0.0209 \cdot T/K$

with $\Delta H^{syn} = 11.3 \pm 0.1 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S^{syn} = 20.9 \pm 0.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

At 539 K (265^OC) ΔG^{syn} is zero; below this temperature the compound becomes instable, it must decompose to a mixture (NaCl + Na_aGdCl₃).

It is not possible to conduct these measurements at temperatures below ~ 250° C because of the growing electrical resistivity of the electrolytes. However, the distinct endothermic DTA-effect at 209° C in heating curves indicates a solid-state reaction, which is not a transition from D->H. but a decomposition D-Na₃GdCl₆ -> NaCl + Na₂ GdCl₅. This is confirmed by a dynamic high temperatur Guinier photo: in fig. 3, which is drawn directly from this photo, one can see the peaks of D-Na₃GdCl₆ and H-Na₃GdCl₆ separated by the reflections of the mixture (NaCl + Na₂GdCl₅).

The X-ray patterns of both Na_3GdCl_b -modifications could be indexed using the unit cell parameters of Meyer: the D-form with a trigonal cell, the H-form with a monoclinic cell.

Fig. 2 EMF vs. T values for the reaction NaCl + $Na_2GdCl_5 = Na_3GdCl_6$

Fig. 3 Dynamic high-temperature Guinier pattern of Na₃GdCl₆

It is not possible to retain H-Na₃GdCl_o metastable at ambient temperature by quenching: thus. no determination of ΔH by solution-calorimetry could be done. For D-Na₃GdCl_o the following solution enthalpies were yielded: $\Delta H_{298}^{1}(GdCl_{3}) = +4.5 \text{ kJ} \text{ mol}^{-1}$ $\Delta H_{298}^{1}(NaCl) = -180.3 \text{ kJ} \text{ mol}^{-1}$

 $\Delta H_{298}^{1}(D-Na_{3}GdCl_{o}) = -187.9 \text{ kJ} \cdot \text{mol}^{-1}.$

With these values according to the equation $3NaCl+GdCl_3 = D-Na_3GdCl_0$ the enthalpy $\Delta H_{298}^{f}(D-Na_3GdCl_0) =+11.2 \text{ kJ}\cdot\text{mol}^{-1}$ is obtained. (It must be stated that the enthalpy, obtained by e.m.f.-measurements, is related to the formation of H-Na_3GdCl_0 from NaCl and Na_2GdCl_3).

CONCLUSIONS

H-Na₃GdCl₆ is a compound stable above 538 K. At this temperature the loss of lattice enthalpy compared with a mixture of NaCl+Na₂GdCl₅ (positive ΔH^{syn}) is just equal to the T· Δ S·term, produced by a gain in entropy. Neither by quenching nor by normal cooling it can be retained metastable at ambient temperature. but with strong undercooling it is transformed directly to D-Na₃GdCl₆ at ~400 K. The (NaCl+Na₂GdCl₅)-mixture stable at intermediate temperature is not formed in cooling experiments because of a too great kinetic hindrance: it can be yielded only by annealing at temperatures between 480 and 530 K for 5 or more days.

The situation with D-Na₃GdCl_o is still much more precarious by such kinetic effects. When heating the compound either decomposition to NaCl+Na₂GdCl₅ occurs at ~480 K. as demanded by thermodynamics, or this reaction is kinetically suppressed and at ~570 K H-Na₃GdCl_o is formed directly. In this case the formation of the H-modification is very slow, at temperatures slightly above 538 K in DTA - or DSC - experiments only a more or less small endothermic peak can be observed. This behaviour does not admit a direct measurement of the related enthalpy by DSC.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

REFERENCES

- 1. H.J. Seifert, H. Fink and G. Thiel, J.Less-Common Metals 110 (1985) 1959.
- 2. H.J. Seifert, J. Sandrock and G. Thiel, J.Therm.Anal. 31 (1987) 1309.
- 3. H.J. Seifert, J. Sandrock and J. Uebach, Z.anorg.allg.Chem. 555 (1987) 143.
- 4. H.J. Seifert, H. Fink u. J. Uebach, J.Therm.Anal. 32 (1988), 625.
- 5. G. Thiel and H.J. Seifert, Thermochim.Acta 133 (1988) 275,
- 6. B. G. Korshunov, D. V. Drobot and Z. M. Shevtsova, Z.Neorg.Khim 10 (1965) 2310 + 939.
- 7. G. Meyer, Z.anorg.allg.Chem. 517 (1984) 191.
- 8. G.Meyer, P. Ax, T. Schleid and M. Irmler, Z.anorg.allg.Chem. 554 (1987) 25.
- 9. H.J. Seifert and G. Thiel. J.Chem.Thermodyn. 14 (1982) 1159.
- 10. G. Meyer and E. Hüttl, Z.anorg.allg.Chem. 497 (1983) 191.